Elliptic Curves as Attractors in ℙ2 Part 1: Dynamics
نویسندگان
چکیده
A study of rational maps of the real or complex projective plane of degree two or more, concentrating on those which map a genus one curve onto itself, necessarily by an expanding map. We describe relatively simple examples with a rich variety of interesting dynamical behaviors which are perhaps familiar to the applied dynamics community but not to specialists in several complex variables. For example, we describe smooth attractors with riddled or intermingled attracting basins, and we observe “blowout” bifurcations when the transverse Lyapunov exponent for the invariant curve changes sign. In the complex case, we prove that the genus one curve (a topological torus) can never have a trapping neighborhood, yet it can have an attracting basin of large measure (perhaps even of full measure). We also describe examples where there appear to be attracting Herman rings (that is topological cylinders mapped to themselves with irrational rotation number) with open attracting basin. Section 8 provides a more general discussion of Herman rings and Siegel disks for arbitrary holomorphic maps of P(C); and the last section outlines open problems.
منابع مشابه
Elliptic Curves as Attractors in P Part 1: Dynamics
A study of rational maps of the real or complex projective plane of degree two or more, concentrating on those which map an elliptic curve onto itself, necessarily by an expanding map. We describe relatively simple examples with a rich variety of exotic dynamical behaviors which are perhaps familar to the applied dynamics community but not to specialists in several complex variables. For exampl...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملAn Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 16 شماره
صفحات -
تاریخ انتشار 2007